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Summary 

Microwave o r  o p t i c a l  f requency standards based 
on i n t e r n a l  resonance t r a n s i t i o n s  o f  ions  con f ined  
i n  e lec t romagnet ic  t r a p s  have the  fundamental advan- 
tages o f  l o n g  obse rva t i on  t imes and smal l  pe r tu rba -  
t i o n s .  These advantages are  somewhat o f f s e t  by low 
s i g n a l  t o  no i se  r a t i o s .  Work a t  NBS has concentra- 
t e d  on microwave h y p e r f i n e  t r a n s i t i o n s  o f  atomic 
i o n s  s to red  i n  Penning-type i o n  t raps .  The use o f  
narrowband, tunab le  l i g h t  sources f o r  s t a t e  se lec-  
t i o n  and d e t e c t i o n  and f o r  reduc ing  the  average 
k i n e t i c  energy o f  t h e  ions  ( l a s e r  coo l i ng )  i s  an 
impor tan t  f e a t u r e  o f  t h i s  work. Resu l ts  t o  -date' 
i n c l u d e  t h e  f luorescence Q e t e c t i o n  and c o o l i n g  t o  
about 50 mK o f  a s i n g l e  Mg i o n  and t& okserva t i on  
o f  a 0.012 Hz l i n e w i d t h  on a 300 MHz 
t r a n s i t i o n .  A f requency s tandard  based on Hg 
ions  i s  under development. Re la ted  work, mos t l y  
based on RF-type i o n  t r a p s ,  i s  underway a t  severa l  
o t h e r  labs .  

Mg h y f H f i p e  

I n t r o d u c t i o n  

A t  p resent ,  t h e  most accura te  ( rep roduc ib le )  
f requency standards a re  based on microwave t r a n s i -  
t i o n s  o f  atoms o r  molecules.  The s t a b i l i t y  o f  a 
f requency s tandard  inc reases  w i t h  inc reased Q ( t r a n -  
s i t i o n  f requency d i v i d e d  by l i n e w i d t h )  and increased 
s i g n a l  t o  no i se  r a t i o .  The r e p r o d u c i b i l i t y  depends 
upon c o n t r o l  o f  environmental  f a c t o r s .  Standards 
based on narrow o p t i c a l  t r a n s i t i o n s  have t h e  advan- 
tage o f  h i g h e r  Q f o r  a g i ven  i n t e r a c t i o n  t ime ,  f o r  
cases where t h e  l i n e w i d t h  i s  l i m i t e d  by  i n t e r a c t i o n  
t ime. However, t h e  use o f  such a f requency s tandard  
t o  generate p r e c i s e  t ime,  one o f  t h e  c h i e f  app l i ca -  
t i o n s  o f  f requency standards,  i s  v e r y  d i f f i c u l t  w i t h  
c u r r e n t  technology. The main d i f f i c u l t y  i s  d i v i d i n g  
an o p t i c a l  f requency down t o  the  RF reg ion .  A lso ,  
h i g h - s t a b i l i t y  o p t i c a l  sources a re  n o t  easy t o  
produce. 

An a tomic  frequency s tandard  can be e i t h e r  
a c t i v e  o r  pass ive  i n  na ture .  I n  an a c t i v e  dev ice ,  
such as a s e l f - o s c i l l a t i n g  hydrogen maser, e x c i t e d  
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atoms decay, e m i t t i n g  r a d i a t i o n  w i t h  a s t a b l e  f r e -  
quency. I n  a pass ive  device,  such as a cesium 
a tomic  beam, t h e  atomic resonance frequency i s  
p robed by  r a d i a t i o n  d e r i v e d  from an o s c i l l a t o r  whose 
frequency i s  c o n t r o l l e d  i n  a feedback l oop  so t h a t  
t h e  f requency o f  t h e  r a d i a t i o n  matches t h a t  o f  t h e  
atoms. A l l  o f  t h e  proposed frequency standards 
based on s to red  i ons  t o  be d iscussed i n  t h i s  paper 
a r e  pass i ve  devices.  

I ons  can be con f ined  f o r  l o n g  pe r iods  (as l o n g  
as days) under u l t r a h i g h  vacuum c o n d i t i o n s  i n  i o n  
t r a p s  by  e l e c t r i c  and magnetic f i e l d s .  For  f requen- 
c y  s tandard  a p p l i c a t i o n s ,  s t o r e d  i ons  have t h e  
combined advantages o f  l o n g  i n t e r a c t i o n  t imes  (hence 
narrow resonance l i n e s ) ,  because b o t h  t h e  s to rage 
and r e l a x a t i o n  t imes can be long,  and smal l  p e r t u r -  
b a t i o n s  t o  t r a n s i t i o n  f requenc ies .  Atoms i n  atomic 
beams a l s o  have smal l  p e r t u r b a t i o n s ,  b u t  t h e  i n t e r -  
a c t i o n  t ime i s  l i m i t e d  t o  the  f l i g h t  t i m e  th rough 
t h e  apparatus ( 5  0.01 s). Atoms can be s to red  
w i t h o u t  r e l a x a t i o n  i n  b u f f e r  gases o r  coated  c e l l s  
f o r  t imes  up t o  about 1 s, b u t  t h e  t r a n s i t i o n  f r e -  
quencies a re  s i g n i f i c a n t l y  pe r tu rbed  by  c o l l i s i o n s .  
The fundamental d isadvantage o f  i o n  t r a p s  i s  t h e  low 
s i g n a l  t o  no i se  r a t i o ,  due t o  t h e  s v l l  number o f  
i o n s  t h a t  can be s t o r e d  ( t y p i c a l l y  10 o r  l e s s  i n  a 
t r a p  o f  cm dimensions). 

Several  l a b o r a t o r i e s  have worked on deve lop ing  
a f requency s tandard  based 939 th$  40.5 GHz ground 
s t a t e  h y p e r f i n e  s p l i t t i n g  o f  Hg i o n s  Zt-yed i n  a 
t r a p  o f  t h e  RF quadrupole (Paul)  type. S ta te  
s e l e c t i o n  and d e t e c t i o n  i s  by o p t i c 2 d  p mping. 
Resonance l i g h t  f rom a lamp c o n t a i n i n g  2HSY pumps 
i o n s  f rom the  F = l  l e v e l  t o  t h e  F=O l e v e l .  Resonant 
microwave r a d i a t i o n  repopu la tes  t h e  F = l  l e v e l  and i s  
de tec ted  by an inc rease i n  t h e  resonance f l u o r e s -  
cence i n t e n s i t y .  Ryonance l i n e w i d t h s  o f  about  1 Hz 
have been observed. A t  p resen t ,  t h e  main accuracy 
1 i m i t a t i o n  i s  t h e  second-order Doppler ( t ime  d i i f -  
t i o n )  s h i f t ,  which i s  r e l a t i v e l y  h i g h  (about 10 ) 
because t h e  average i o n  k i n e t i c  energy . a+few eV. 
I n  a s i m i l y  exper iment on t rapped IRYb ions ,  
B l a t t  e t  a l .  have observed a 0.06 Hz l i n e w i d t h  on a 
12.6 GHz hyper f i ne  t r a n s i t i o n ,  cor respond ing  t o  a Q 

t 
2h t 6 = B, i (required for Penning trap) 

electrode surfaces generated 
by Q(r, 2 )  = const. 

z) = A(? - 2z2) 
V 

ro2 + 2z02 

F igu re  1. E lec t rode  c o n f i g u r a t i o n  f o r  RF o r  Penning t rap .  
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of 2 x lo1', the highest ye t  obtained in  microwave 
spectroscopy. Various proposals have been made fo r  
optical  frequency sta$grds based on narrow transi-  
t ions in  atomic ions, b u t  norle of them have ye t  
been experimentally realized. 

-BACKGROUND 

Experimental Methods and Results 

The stored ion experl@yJ.s a t  the National 
Bureau of Standards (NBS) 
traps.  In a Penning t r ap ,  an outline of which i s  
shown in Fig. 1, ions are  confined by a quadrupole 
e lec t r ic  potential  and a uniform magnetic f ie ld .  
Since only s t a t i c  f i e lds  are used, cooling the. ions 
t o  reduce the second-order Doppler s h i f t  i s  much 
easier  than in  an RF t r ap ,  which uses osci l la t ing 
inhomogeneous e lec t r ic  f ie lds .  Confinement of an 
ion in  a Penning t rap i s  unstable, because col l is ions 
with residual gas molecules increase the radial  
extent of the orbi t .  In pract ice ,  however, ions can 
be confined fo r  days even without laser  cooling ( t o  
be explained below), and indefini te ly  with laser  
cooling. 

Laser cooling (also called optical  sideband 
cooling o r  radiation pressure cooling) i s  a method 
by which a beam of l i gh t  can be used t o  damp the 
velocity o f  an atom o r  ion. The basic mechanism fo r  
cooling of a trapped ion by a laser  beam tuned 
s l igh t ly  lower i n  frequency than a strongly allowed 
resonance t ransi t ion i s  as  follows: when the veloci- 
ty  of the ion i s  directed against  the laser  beam, 
the l i g h t  frequency in  the ion 's  frame i s  Doppler 
shif ted closer  t o  resonance so t h a t  the l i gh t  scat-  
ter ing takes place a t  a higher r a t e  than when the 
velocity i s  along the laser  beam. Since the photons 
are  reemitted in  random directions,  the net e f f ec t ,  
over a motional cycle,  i s  t o  damp the ion's veloci- 
t y ,  due t o  absorption of photon momentum. If  the 
laser  frequency i s  tuned above resonance, i t  causes 
heating. The e f fec ts  of frequency detuning, orienta- 
t i on ,  and intensi ty  prof i le  of the laser  beam on 
laser  cooliaa of an ion in  a Pennina traD have been 

have a l l  used Penning 

- .  
calculated. Io 

Laser coolina of Ma +10*11*13and Be' l5 ions has 
been achieved, "using - the strongly allowed f i r s t  
resonance l ines.  For both ions, the l i gh t  sources 
were the second harmonics, generated in nonlinear 
crystals ,  of CW dye lasers.  I t  i s  easier  t o  reach 
very low temperatures with low ion densi t ies ,  be- 
cause of space charge induced motion. Single ions 
can be detected by fluorescence, as  shown in Fig. 2. 
The four plateaus are due t o  thearesence  in  the 
t rap  of three,  two, one, and zero 25Mg ions, which 
were n e u t r a l l y d ,  one by one, by Mg atoms coming 
from an oven. Optical Doppler broadening measure- 

ments on a single ion indicated tha t  the effect ive 
temperature fo r  l'gotion paral le l  t o  the laser  beam 
was about 50 mK. Laser cooling and detection of a 
s ingle  trappqg &n has also been reported by Neu- 
hauser G .  '*" 

Long relaxation times fo r  hyperfine and Zeeman 
sublevels make possQle a very sensi t ive double 
resonance technique. In some cases,  the laser  
polarization and frequency can be adjusted so t ha t  
most of the ions are  transferred t o  the sublevel 
which i s  coupled most strongly t o  the excited s t a t e  
and which scat ters  photons a t  a high rate.  A t ransi-  
t ion from t h i s  level induced, fo r  example, by micro- 
waves, resul ts  i n  an interruption of the photon 
scat ter ing until  the ion i s  pumped back t o  the 
original sublevel by weak, off-resonance transi-  
t ions.  The number of photons not scattered during 
thhs period can be very large,  x f a c t  greater than 
10 , so t ha t  the microwave t ransi t ion can be detect- 
ed with nearly 100% quantum efficiency, even though 
only a small fraction of scattered photons are  
counted. This i s  important fo r  maximizing the 
signal t o  noise r a t i o  in  a frequency standard. 

Figure 3 shows a hyperfine 29sor)ance oyhained 
on a small cloud of laser  cooled Mg ions. The 
osci l la tory lineshape resul ts  from the use of the 
Ramsey separated osci l la tory f i e ld  technique, ap- 
plied in  the time domain. Two coherent 1.02 s RF 
pulses separated by 41.4 s were used t o  drive the 
t ransi t ion.  This resonance demonstrates the long 
relaxation times possible with stored ions. Line 
broadening due t o  magnetic f i e l d  variations was 
eliminated by operating the t rap near a magnetic 
f i e l d  a t  which the derivative of the t ransi t ion 
frequency with respect t o  f i e l d  i s  zero.9 Figure 4 
shows a similar hyperfine resonance of f& . Two 
2 s RF pulses separated by 4 s were applied. 

Future Work 

Details of a specif ic  proposal fo r  a microwave 
f r e M n c S  standard based on a hyperfine t ransi t ion 
of Hg ions s toregoin a Penning t rap  have been 
published previously. The main advantage of Hg i s  
the high frequency of the  t ransi t ion (26 GHz). The 
potens91 accuracy i s  estimated t o  be about 1 par t  
i n  10  . ( A t  present, the most accurate frequency 
standards are  laboratory % atomic l$eams, with an 
accuracy of 1 par t  in  10 t o  19 .) For laser  
cooling and optical  pumping of Hg , a narrowband, 
tunable,  CW 194 nm source i s  required. &ch a 
source has recently been developed a t  NBS. The 
second harmonic of an argon ion 515 nm l a s e r ,  gener- 
ated in  an ADP (ammonium dihydrogen phosphate) 
c rys ta l ,  i s  sum frequency mixed w i t h  a 792 nm dye 

Figure 2. 
individual ions. 

Fluorescence from a small cloud of 24Mg+ ions. The three large steps are  due t o  the loss of 
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Figure 3. 25Mg+ hyperfine resonance. 

laser in a KB5 (potassium pentaborate) crystal. 
output at 194 nm is about 2 vW, which should be 
enough for preliminary experiments. 
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